
Click to add Text

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 12: Indexing and Hashing

Rev. Sep 17, 2008

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan12.2Database System Concepts - 5th Edition.

Chapter 12: Indexing and Hashing

 Basic Concepts

 Ordered Indices

 B+-Tree Index Files

 B-Tree Index Files

 Static Hashing

 Dynamic Hashing

 Comparison of Ordered Indexing and Hashing

 Index Definition in SQL

 Multiple-Key Access

©Silberschatz, Korth and Sudarshan12.3Database System Concepts - 5th Edition.

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up

records in a file.

 An index file consists of records (called index entries) of the

form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

©Silberschatz, Korth and Sudarshan12.4Database System Concepts - 5th Edition.

Index Evaluation Metrics

 Access types supported efficiently. E.g.,

 records with a specified value in the attribute

 or records with an attribute value falling in a specified range

of values (e.g. 10000 < salary < 40000)

 Access time

 Insertion time

 Deletion time

 Space overhead

©Silberschatz, Korth and Sudarshan12.5Database System Concepts - 5th Edition.

Ordered Indices

 In an ordered index, index entries are stored sorted on the

search key value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose

search key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not

necessarily the primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

 Index-sequential file: ordered sequential file with a primary index.

©Silberschatz, Korth and Sudarshan12.6Database System Concepts - 5th Edition.

Dense Index Files

 Dense index — Index record appears for every search-key

value in the file.

©Silberschatz, Korth and Sudarshan12.7Database System Concepts - 5th Edition.

Sparse Index Files

 Sparse Index: contains index records for only some search-key values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

©Silberschatz, Korth and Sudarshan12.8Database System Concepts - 5th Edition.

Sparse Index Files (Cont.)

 Compared to dense indices:

 Less space and less maintenance overhead for insertions and

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in

file, corresponding to least search-key value in the block.

©Silberschatz, Korth and Sudarshan12.9Database System Concepts - 5th Edition.

Multilevel Index

 If primary index does not fit in memory, access becomes

expensive.

 Solution: treat primary index kept on disk as a sequential file

and construct a sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet

another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion

from the file.

©Silberschatz, Korth and Sudarshan12.10Database System Concepts - 5th Edition.

Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan12.11Database System Concepts - 5th Edition.

Index Update: Record Deletion

 If deleted record was the only record in the file with its particular search-

key value, the search-key is deleted from the index also.

 Single-level index deletion:

 Dense indices – deletion of search-key: similar to file record deletion.

 Sparse indices –

 if deleted key value exists in the index, the value is replaced by

the next search-key value in the file (in search-key order).

 If the next search-key value already has an index entry, the entry

is deleted instead of being replaced.

©Silberschatz, Korth and Sudarshan12.12Database System Concepts - 5th Edition.

Index Update: Record Insertion

 Single-level index insertion:

 Perform a lookup using the key value from inserted record

 Dense indices – if the search-key value does not appear in

the index, insert it.

 Sparse indices – if index stores an entry for each block of

the file, no change needs to be made to the index unless a

new block is created.

 If a new block is created, the first search-key value

appearing in the new block is inserted into the index.

 Multilevel insertion (as well as deletion) algorithms are simple

extensions of the single-level algorithms

©Silberschatz, Korth and Sudarshan12.13Database System Concepts - 5th Edition.

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on balance field of account

©Silberschatz, Korth and Sudarshan12.14Database System Concepts - 5th Edition.

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database

modification --when a file is modified, every index on the file

must be updated,

 Sequential scan using primary index is efficient, but a

sequential scan using a secondary index is expensive

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 micro seconds, versus

about 100 nanoseconds for memory access

©Silberschatz, Korth and Sudarshan12.15Database System Concepts - 5th Edition.

B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many overflow
blocks get created.

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local, changes,
in the face of insertions and deletions.

 Reorganization of entire file is not required to maintain
performance.

 (Minor) disadvantage of B+-trees:

 extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

©Silberschatz, Korth and Sudarshan12.16Database System Concepts - 5th Edition.

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n

children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the tree),

it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

©Silberschatz, Korth and Sudarshan12.17Database System Concepts - 5th Edition.

B+-Tree Node Structure

 Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

©Silberschatz, Korth and Sudarshan12.18Database System Concepts - 5th Edition.

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with

search-key value Ki, or to a bucket of pointers to file records,

each record having search-key value Ki. Only need bucket

structure if search-key does not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less

than Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

©Silberschatz, Korth and Sudarshan12.19Database System Concepts - 5th Edition.

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf

nodes. For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are

less than K1

 For 2  i  n – 1, all the search-keys in the subtree to which

Pi points have values greater than or equal to Ki–1 and less

than Ki

 All the search-keys in the subtree to which Pn points have

values greater than or equal to Kn–1

©Silberschatz, Korth and Sudarshan12.20Database System Concepts - 5th Edition.

Example of a B+-tree

B+-tree for account file (n = 3)

©Silberschatz, Korth and Sudarshan12.21Database System Concepts - 5th Edition.

Example of B+-tree

 Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3

and 5 children ((n/2 and n with n =5).

 Root must have at least 2 children.

B+-tree for account file (n = 5)

©Silberschatz, Korth and Sudarshan12.22Database System Concepts - 5th Edition.

Observations about B+-trees

 Since the inter-node connections are done by pointers,

“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse

indices.

 The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is

no more than  logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled

efficiently, as the index can be restructured in logarithmic time

(as we shall see).

©Silberschatz, Korth and Sudarshan12.23Database System Concepts - 5th Edition.

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k  Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.

4. Else no record with search-key value k exists.

©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 5th Edition.

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the

tree is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a

lookup.

 Contrast this with a balanced binary tree with 1 million search

key values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access

may need a disk I/O, costing around 20 milliseconds

©Silberschatz, Korth and Sudarshan12.25Database System Concepts - 5th Edition.

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if

necessary)

2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node

3. Otherwise, split the node (along with the new (key-value,

pointer) entry) as discussed in the next slide.

©Silberschatz, Korth and Sudarshan12.26Database System Concepts - 5th Edition.

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first n/2 in the original

node, and the rest in a new node.

 let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

 In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brighton and Downtown on inserting

Clearview

Next step: insert entry with (Downtown,pointer-to-new-node) into parent

©Silberschatz, Korth and Sudarshan12.27Database System Concepts - 5th Edition.

Updates on B+-Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

©Silberschatz, Korth and Sudarshan12.28Database System Concepts - 5th Edition.

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an already

full internal node N

 Copy N to an in-memory area M with space for n+1 pointers

and n keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated

node N’

 Insert (K n/2,N’) into parent N

 Read pseudocode in book!

Downtown Mianus Perryridge Downtown

Mianus

©Silberschatz, Korth and Sudarshan12.29Database System Concepts - 5th Edition.

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file

and from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there

is no bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the

entries in the node and a sibling fit into a single node, then

merge siblings:

 Insert all the search-key values in the two nodes into a

single node (the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the

deleted node, from its parent, recursively using the above

procedure.

©Silberschatz, Korth and Sudarshan12.30Database System Concepts - 5th Edition.

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal,

but the entries in the node and a sibling do not fit into a single

node, then redistribute pointers:

 Redistribute the pointers between the node and a sibling

such that both have more than the minimum number of

entries.

 Update the corresponding search-key value in the parent of

the node.

 The node deletions may cascade upwards till a node which has

n/2 or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted

and the sole child becomes the root.

©Silberschatz, Korth and Sudarshan12.31Database System Concepts - 5th Edition.

Examples of B+-Tree Deletion

 Deleting “Downtown” causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 5th Edition.

Examples of B+-Tree Deletion (Cont.)

Before and After deletion of “Perryridge” from result of

previous example

©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 5th Edition.

Examples of B+-Tree Deletion (Cont.)

 Leaf with “Perryridge” becomes underfull (actually empty, in this
special case) and merged with its sibling.

 As a result “Perryridge” node’s parent became underfull, and was
merged with its sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

©Silberschatz, Korth and Sudarshan12.34Database System Concepts - 5th Edition.

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, and borrowed a

pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example

©Silberschatz, Korth and Sudarshan12.35Database System Concepts - 5th Edition.

B+-Tree File Organization

 Index file degradation problem is solved by using B+-Tree indices.

 Data file degradation problem is solved by using B+-Tree File

Organization.

 The leaf nodes in a B+-tree file organization store records, instead

of pointers.

 Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number

of records that can be stored in a leaf node is less than the

number of pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion

and deletion of entries in a B+-tree index.

©Silberschatz, Korth and Sudarshan12.36Database System Concepts - 5th Edition.

B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than

pointers.

 To improve space utilization, involve more sibling nodes in

redistribution during splits and merges

 Involving 2 siblings in redistribution (to avoid split / merge where

possible) results in each node having at least entries

Example of B+-tree File Organization

 3/2 n

©Silberschatz, Korth and Sudarshan12.37Database System Concepts - 5th Edition.

Indexing Strings

 Variable length strings as keys

 Variable fanout

 Use space utilization as criterion for splitting, not number of

pointers

 Prefix compression

 Key values at internal nodes can be prefixes of full key

Keep enough characters to distinguish entries in the

subtrees separated by the key value

– E.g. “Silas” and “Silberschatz” can be separated by “Silb”

 Keys in leaf node can be compressed by sharing common

prefixes

©Silberschatz, Korth and Sudarshan12.38Database System Concepts - 5th Edition.

B-Tree Index Files

 Similar to B+-tree, but B-tree allows search-key values

to appear only once; eliminates redundant storage of

search keys.

 Search keys in nonleaf nodes appear nowhere else in

the B-tree; an additional pointer field for each search

key in a nonleaf node must be included.

 Generalized B-tree leaf node

 Nonleaf node – pointers Bi are the bucket or file record
pointers.

©Silberschatz, Korth and Sudarshan12.39Database System Concepts - 5th Edition.

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

©Silberschatz, Korth and Sudarshan12.40Database System Concepts - 5th Edition.

B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before reaching

leaf node.

 Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early

 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree

 Insertion and deletion more complicated than in B+-Trees

 Implementation is harder than B+-Trees.

 Typically, advantages of B-Trees do not out weigh disadvantages.

©Silberschatz, Korth and Sudarshan12.41Database System Concepts - 5th Edition.

Multiple-Key Access

 Use multiple indices for certain types of queries.

 Example:

select account_number

from account

where branch_name = “Perryridge” and balance = 1000

 Possible strategies for processing query using indices on single
attributes:

1. Use index on branch_name to find accounts with branch name
Perryridge; test balance = 1000

2. Use index on balance to find accounts with balances of
$1000; test branch_name = “Perryridge”.

3. Use branch_name index to find pointers to all records
pertaining to the Perryridge branch. Similarly use index on
balance. Take intersection of both sets of pointers obtained.

©Silberschatz, Korth and Sudarshan12.42Database System Concepts - 5th Edition.

Indices on Multiple Keys

 Composite search keys are search keys containing more than

one attribute

 E.g. (branch_name, balance)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either

 a1 < b1, or

 a1=b1 and a2 < b2

©Silberschatz, Korth and Sudarshan12.43Database System Concepts - 5th Edition.

Indices on Multiple Attributes

 For

where branch_name = “Perryridge” and balance = 1000

the index on (branch_name, balance) can be used to fetch only

records that satisfy both conditions.

 Using separate indices in less efficient — we may fetch many

records (or pointers) that satisfy only one of the conditions.

 Can also efficiently handle

where branch_name = “Perryridge” and balance < 1000

 But cannot efficiently handle

where branch_name < “Perryridge” and balance = 1000

 May fetch many records that satisfy the first but not the

second condition

Suppose we have an index on combined search-key

(branch_name, balance).

©Silberschatz, Korth and Sudarshan12.44Database System Concepts - 5th Edition.

Non-Unique Search Keys

 Alternatives:

 Buckets on separate block (bad idea)

 List of tuple pointers with each key

Low space overhead, no extra cost for queries

Extra code to handle read/update of long lists

Deletion of a tuple can be expensive if there are many

duplicates on search key (why?)

 Make search key unique by adding a record-identifier

Extra storage overhead for keys

Simpler code for insertion/deletion

Widely used

©Silberschatz, Korth and Sudarshan12.45Database System Concepts - 5th Edition.

Other Issues in Indexing

 Covering indices

 Add extra attributes to index so (some) queries can avoid
fetching the actual records

Particularly useful for secondary indices

– Why?

 Can store extra attributes only at leaf

 Record relocation and secondary indices

 If a record moves, all secondary indices that store record
pointers have to be updated

 Node splits in B+-tree file organizations become very expensive

 Solution: use primary-index search key instead of record
pointer in secondary index

Extra traversal of primary index to locate record

– Higher cost for queries, but node splits are cheap

Add record-id if primary-index search key is non-unique

Click to add Text

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Hashing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan12.47Database System Concepts - 5th Edition.

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as well

as deletion.

 Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to

locate a record.

©Silberschatz, Korth and Sudarshan12.48Database System Concepts - 5th Edition.

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to be the

integer i.

 The hash function returns the sum of the binary representations of

the characters modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch_name as key

(See figure in next slide.)

©Silberschatz, Korth and Sudarshan12.49Database System Concepts - 5th Edition.

Example of Hash File Organization

Hash file organization

of account file, using

branch_name as key

(see previous slide for

details).

©Silberschatz, Korth and Sudarshan12.50Database System Concepts - 5th Edition.

Hash Functions

 Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

 Typical hash functions perform computation on the internal binary

representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

©Silberschatz, Korth and Sudarshan12.51Database System Concepts - 5th Edition.

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan12.52Database System Concepts - 5th Edition.

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained

together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

©Silberschatz, Korth and Sudarshan12.53Database System Concepts - 5th Edition.

Hash Indices

 Hashing can be used not only for file organization, but also for index-

structure creation.

 A hash index organizes the search keys, with their associated record

pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary indices

 if the file itself is organized using hashing, a separate primary

hash index on it using the same search-key is unnecessary.

 However, we use the term hash index to refer to both secondary

index structures and hash organized files.

©Silberschatz, Korth and Sudarshan12.54Database System Concepts - 5th Edition.

Example of Hash Index

©Silberschatz, Korth and Sudarshan12.55Database System Concepts - 5th Edition.

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B

of bucket addresses. Databases grow or shrink with time.

 If initial number of buckets is too small, and file grows, performance

will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of

space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash

function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically.

©Silberschatz, Korth and Sudarshan12.56Database System Concepts - 5th Edition.

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0  i  32.

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows
and shrinks.

 Multiple entries in the bucket address table may point to a bucket
(why?)

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

©Silberschatz, Korth and Sudarshan12.57Database System Concepts - 5th Edition.

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next

slide for details)

©Silberschatz, Korth and Sudarshan12.58Database System Concepts - 5th Edition.

Use of Extendable Hash Structure

 Each bucket j stores a value ij

 All the entries that point to the same bucket have the same values on

the first ij bits.

 To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket

address table, and follow the pointer to appropriate bucket

 To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket, say j.

 If there is room in the bucket j insert record in the bucket.

 Else the bucket must be split and insertion re-attempted (next slide.)

 Overflow buckets used instead in some cases (will see shortly)

©Silberschatz, Korth and Sudarshan12.59Database System Concepts - 5th Edition.

Insertion in Extendable Hash Structure (Cont)

 If i > ij (more than one pointer to bucket j)

 allocate a new bucket z, and set ij = iz = (ij + 1)

 Update the second half of the bucket address table entries originally
pointing to j, to point to z

 remove each record in bucket j and reinsert (in j or z)

 recompute new bucket for Kj and insert record in the bucket (further
splitting is required if the bucket is still full)

 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket

 Else

 increment i and double the size of the bucket address table.

 replace each entry in the table by two entries that point to the
same bucket.

 recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

©Silberschatz, Korth and Sudarshan12.60Database System Concepts - 5th Edition.

Deletion in Extendable Hash Structure

 To delete a key value,

 locate it in its bucket and remove it.

 The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).

 Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it is

present)

 Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets becomes

much smaller than the size of the table

©Silberschatz, Korth and Sudarshan12.61Database System Concepts - 5th Edition.

Use of Extendable Hash Structure:

Example

Initial Hash structure, bucket size = 2

©Silberschatz, Korth and Sudarshan12.62Database System Concepts - 5th Edition.

Example (Cont.)

 Hash structure after insertion of one Brighton and two Downtown

records

©Silberschatz, Korth and Sudarshan12.63Database System Concepts - 5th Edition.

Example (Cont.)

Hash structure after insertion of Mianus record

©Silberschatz, Korth and Sudarshan12.64Database System Concepts - 5th Edition.

Example (Cont.)

Hash structure after insertion of three Perryridge records

©Silberschatz, Korth and Sudarshan12.65Database System Concepts - 5th Edition.

Example (Cont.)

 Hash structure after insertion of Redwood and Round Hill records

©Silberschatz, Korth and Sudarshan12.66Database System Concepts - 5th Edition.

Extendable Hashing vs. Other Schemes

 Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than
memory)

 Cannot allocate very large contiguous areas on disk either

 Solution: B+-tree file organization to store bucket address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket
address table)

 At the cost of more bucket overflows

©Silberschatz, Korth and Sudarshan12.67Database System Concepts - 5th Edition.

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the expense of

worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a specified

value of the key.

 If range queries are common, ordered indices are to be preferred

 In practice:

 PostgreSQL supports hash indices, but discourages use due to

poor performance

 Oracle supports static hash organization, but not hash indices

 SQLServer supports only B+-trees

©Silberschatz, Korth and Sudarshan12.68Database System Concepts - 5th Edition.

Bitmap Indices

 Bitmap indices are a special type of index designed for efficient

querying on multiple keys

 Records in a relation are assumed to be numbered sequentially from,

say, 0

 Given a number n it must be easy to retrieve record n

 Particularly easy if records are of fixed size

 Applicable on attributes that take on a relatively small number of

distinct values

 E.g. gender, country, state, …

 E.g. income-level (income broken up into a small number of levels

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

 A bitmap is simply an array of bits

©Silberschatz, Korth and Sudarshan12.69Database System Concepts - 5th Edition.

Bitmap Indices (Cont.)

 In its simplest form a bitmap index on an attribute has a bitmap for

each value of the attribute

 Bitmap has as many bits as records

 In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is 0 otherwise

©Silberschatz, Korth and Sudarshan12.70Database System Concepts - 5th Edition.

Bitmap Indices (Cont.)

 Bitmap indices are useful for queries on multiple attributes

 not particularly useful for single attribute queries

 Queries are answered using bitmap operations

 Intersection (and)

 Union (or)

 Complementation (not)

 Each operation takes two bitmaps of the same size and applies the

operation on corresponding bits to get the result bitmap

 E.g. 100110 AND 110011 = 100010

100110 OR 110011 = 110111

NOT 100110 = 011001

 Males with income level L1: 10010 AND 10100 = 10000

 Can then retrieve required tuples.

 Counting number of matching tuples is even faster

©Silberschatz, Korth and Sudarshan12.71Database System Concepts - 5th Edition.

Bitmap Indices (Cont.)

 Bitmap indices generally very small compared with relation size

 E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space

used by relation.

 If number of distinct attribute values is 8, bitmap is only 1% of

relation size

 Deletion needs to be handled properly

 Existence bitmap to note if there is a valid record at a record location

 Needed for complementation

 not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap

 Should keep bitmaps for all values, even null value

 To correctly handle SQL null semantics for NOT(A=v):

 intersect above result with (NOT bitmap-A-Null)

©Silberschatz, Korth and Sudarshan12.72Database System Concepts - 5th Edition.

Efficient Implementation of Bitmap Operations

 Bitmaps are packed into words; a single word and (a basic CPU

instruction) computes and of 32 or 64 bits at once

 E.g. 1-million-bit maps can be and-ed with just 31,250 instruction

 Counting number of 1s can be done fast by a trick:

 Use each byte to index into a precomputed array of 256 elements

each storing the count of 1s in the binary representation

 Can use pairs of bytes to speed up further at a higher memory

cost

 Add up the retrieved counts

 Bitmaps can be used instead of Tuple-ID lists at leaf levels of

B+-trees, for values that have a large number of matching records

 Worthwhile if > 1/64 of the records have that value, assuming a

tuple-id is 64 bits

 Above technique merges benefits of bitmap and B+-tree indices

©Silberschatz, Korth and Sudarshan12.73Database System Concepts - 5th Edition.

Index Definition in SQL

 Create an index

create index <index-name> on <relation-name>

(<attribute-list>)

E.g.: create index b-index on branch(branch_name)

 Use create unique index to indirectly specify and enforce the

condition that the search key is a candidate key is a candidate key.

 Not really required if SQL unique integrity constraint is supported

 To drop an index

drop index <index-name>

 Most database systems allow specification of type of index, and

clustering.

Click to add Text

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan12.75Database System Concepts - 5th Edition.

Partitioned Hashing

 Hash values are split into segments that depend on each

attribute of the search-key.

(A1, A2, . . . , An) for n attribute search-key

 Example: n = 2, for customer, search-key being

(customer-street, customer-city)

search-key value hash value

(Main, Harrison) 101 111

(Main, Brooklyn) 101 001

(Park, Palo Alto) 010 010

(Spring, Brooklyn) 001 001

(Alma, Palo Alto) 110 010

 To answer equality query on single attribute, need to look up

multiple buckets. Similar in effect to grid files.

©Silberschatz, Korth and Sudarshan12.76Database System Concepts - 5th Edition.

Sequential File For account Records

©Silberschatz, Korth and Sudarshan12.77Database System Concepts - 5th Edition.

Sample account File

©Silberschatz, Korth and Sudarshan12.78Database System Concepts - 5th Edition.

Figure 12.2

©Silberschatz, Korth and Sudarshan12.79Database System Concepts - 5th Edition.

Figure 12.14

©Silberschatz, Korth and Sudarshan12.80Database System Concepts - 5th Edition.

Figure 12.25

©Silberschatz, Korth and Sudarshan12.81Database System Concepts - 5th Edition.

Grid Files

 Structure used to speed the processing of general multiple search-

key queries involving one or more comparison operators.

 The grid file has a single grid array and one linear scale for each

search-key attribute. The grid array has number of dimensions

equal to number of search-key attributes.

 Multiple cells of grid array can point to same bucket

 To find the bucket for a search-key value, locate the row and column

of its cell using the linear scales and follow pointer

©Silberschatz, Korth and Sudarshan12.82Database System Concepts - 5th Edition.

Example Grid File for account

©Silberschatz, Korth and Sudarshan12.83Database System Concepts - 5th Edition.

Queries on a Grid File

 A grid file on two attributes A and B can handle queries of all following

forms with reasonable efficiency

 (a1  A  a2)

 (b1  B  b2)

 (a1  A  a2  b1  B  b2),.

 E.g., to answer (a1  A  a2  b1  B  b2), use linear scales to find

corresponding candidate grid array cells, and look up all the buckets

pointed to from those cells.

©Silberschatz, Korth and Sudarshan12.84Database System Concepts - 5th Edition.

Grid Files (Cont.)

 During insertion, if a bucket becomes full, new bucket can be created

if more than one cell points to it.

 Idea similar to extendable hashing, but on multiple dimensions

 If only one cell points to it, either an overflow bucket must be

created or the grid size must be increased

 Linear scales must be chosen to uniformly distribute records across

cells.

 Otherwise there will be too many overflow buckets.

 Periodic re-organization to increase grid size will help.

 But reorganization can be very expensive.

 Space overhead of grid array can be high.

 R-trees (Chapter 23) are an alternative

