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Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up 

records in a file.

 An index file consists of records (called index entries) of the 

form

 Index files are typically much smaller than the original file 

 Two basic kinds of indices:

 Ordered indices:  search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across 

“buckets” using a “hash function”. 

search-key pointer
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Index Evaluation Metrics

 Access types supported efficiently.  E.g., 

 records with a specified value in the attribute

 or records with an attribute value falling in a specified range 

of values (e.g.  10000 < salary < 40000)

 Access time

 Insertion time

 Deletion time

 Space overhead
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Ordered Indices

 In an ordered index, index entries are stored sorted on the 

search key value.  E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose 

search key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not 

necessarily the primary key.

 Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called 

non-clustering index.

 Index-sequential file: ordered sequential file with a primary index.
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Dense Index Files

 Dense index — Index record appears for every search-key 

value in the file. 
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Sparse Index Files

 Sparse Index:  contains index records for only some search-key values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index 

record points
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Sparse Index Files (Cont.)

 Compared to dense indices:

 Less space and less maintenance overhead for insertions and 

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in 

file, corresponding to least search-key value in the block.
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Multilevel Index

 If primary index does not fit in memory, access becomes 

expensive.

 Solution: treat primary index kept on disk as a sequential file 

and construct a sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet 

another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion 

from the file.
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Multilevel Index (Cont.)
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Index Update:  Record Deletion

 If deleted record was the only record in the file with its particular search-

key value, the search-key is deleted from the index also.

 Single-level index deletion:

 Dense indices – deletion of search-key: similar to file record deletion.

 Sparse indices –

 if deleted key value exists in the index, the value is replaced by 

the next search-key value in the file (in search-key order).  

 If the next search-key value already has an index entry, the entry 

is deleted instead of being replaced.
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Index Update: Record Insertion

 Single-level index insertion:

 Perform a lookup using the key value from inserted record

 Dense indices – if the search-key value does not appear in 

the index, insert it.

 Sparse indices – if index stores an entry for each block of 

the file, no change needs to be made to the index unless a 

new block is created.  

 If a new block is created, the first search-key value 

appearing in the new block is inserted into the index.

 Multilevel insertion (as well as deletion) algorithms are simple 

extensions of the single-level algorithms
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Secondary Indices Example

 Index record points to a bucket that contains pointers to all the 

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on balance field of account
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Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database 

modification --when a file is modified, every index on the file 

must be updated, 

 Sequential scan using primary index is efficient, but a 

sequential scan using a secondary index is expensive 

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 micro seconds, versus 

about 100 nanoseconds for memory access
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B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many overflow 
blocks get created.  

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:  

 automatically reorganizes itself with small, local, changes, 
in the face of insertions and deletions.  

 Reorganization of entire file is not required to maintain 
performance.

 (Minor) disadvantage of B+-trees: 

 extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.
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B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n

children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases: 

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the tree), 

it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:
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B+-Tree Node Structure

 Typical node

 Ki are the search-key values 

 Pi are pointers to children (for non-leaf nodes) or pointers to 

records or buckets of records (for leaf nodes).

 The search-keys in a node are ordered 

K1 < K2 < K3 < . . . < Kn–1
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Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with 

search-key value Ki, or to a bucket of pointers to file records, 

each record having search-key value Ki.  Only need bucket 

structure if search-key does not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less 

than Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:
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Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf 

nodes.  For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are 

less than K1

 For 2  i  n – 1, all the search-keys in the subtree to which 

Pi points have values greater than or equal to Ki–1 and less 

than Ki

 All the search-keys in the subtree to which Pn points have 

values greater than or equal to Kn–1
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Example of a B+-tree

B+-tree for account file (n = 3)
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Example of B+-tree

 Leaf nodes must have between 2 and 4 values 

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3 

and 5 children ((n/2 and n with n =5).

 Root must have at least 2 children.

B+-tree for account file (n = 5)
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Observations about B+-trees

 Since the inter-node connections are done by pointers, 

“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse 

indices.

 The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is 

no more than  logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled 

efficiently, as the index can be restructured in logarithmic time 

(as we shall see).
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Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki.  Then set N = Pi

3. Otherwise k  Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.  

4. Else no record with search-key value k exists.



©Silberschatz, Korth and Sudarshan12.24Database System Concepts - 5th Edition.

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the 

tree is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4 

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a 

lookup.

 Contrast this with a balanced binary tree with 1 million search 

key values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access 

may need a disk I/O, costing around 20 milliseconds
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Updates on B+-Trees:  Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

3. If the search-key value is not present, then 

1. add the record to the main file (and create a bucket if 

necessary)

2. If there is room in the leaf node, insert (key-value, pointer) 

pair in the leaf node

3. Otherwise, split the node (along with the new (key-value, 

pointer) entry) as discussed in the next slide.
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Updates on B+-Trees:  Insertion (Cont.)

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one 

being inserted) in sorted order.  Place the first n/2 in the original 

node, and the rest in a new node.

 let the new node be p, and let k be the least key value in p.  Insert 

(k,p) in the parent of the node being split. 

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found. 

 In the worst case the root node may be split increasing the height 

of the tree by 1. 

Result of splitting node containing Brighton and Downtown on inserting 

Clearview

Next step: insert entry with (Downtown,pointer-to-new-node) into parent
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Updates on B+-Trees:  Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”
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Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an already 

full internal node N

 Copy N to an in-memory area M with space for n+1 pointers 

and n keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated 

node N’

 Insert (K n/2,N’) into parent N

 Read pseudocode in book!

Downtown  Mianus  Perryridge Downtown

Mianus
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Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file 

and from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there 

is no bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the 

entries in the node and a sibling fit into a single node, then 

merge siblings:

 Insert all the search-key values in the two nodes into a 

single node (the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the 

deleted node, from its parent, recursively using the above 

procedure.
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Updates on B+-Trees:  Deletion

 Otherwise, if the node has too few entries due to the removal, 

but the entries in the node and a sibling do not fit into a single 

node, then redistribute pointers:

 Redistribute the pointers between the node and a sibling 

such that both have more than the minimum number of 

entries.

 Update the corresponding search-key value in the parent of 

the node.

 The node deletions may cascade upwards till a node which has  

n/2 or more pointers is found.  

 If the root node has only one pointer after deletion, it is deleted 

and the sole child becomes the root.
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Examples of B+-Tree Deletion

 Deleting “Downtown” causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”



©Silberschatz, Korth and Sudarshan12.32Database System Concepts - 5th Edition.

Examples of B+-Tree Deletion (Cont.)

Before and After deletion of “Perryridge” from result of 

previous example



©Silberschatz, Korth and Sudarshan12.33Database System Concepts - 5th Edition.

Examples of B+-Tree Deletion (Cont.)

 Leaf with “Perryridge” becomes underfull (actually empty, in this 
special case) and merged with its sibling.

 As a result “Perryridge” node’s parent became underfull, and was 
merged with its sibling 

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted
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Example of B+-tree Deletion (Cont.)

 Parent  of leaf containing Perryridge became underfull, and borrowed a 

pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from earlier example
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B+-Tree File Organization

 Index file degradation problem is solved by using B+-Tree indices.

 Data file degradation problem is solved by using B+-Tree File 

Organization.

 The leaf nodes in a B+-tree file organization store records, instead 

of pointers.

 Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number 

of records that can be stored in a leaf node is less than the 

number of pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion 

and deletion of entries in a B+-tree index.
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B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than 

pointers.  

 To improve space utilization, involve more sibling nodes in 

redistribution during splits and merges

 Involving 2 siblings in redistribution (to avoid split / merge where 

possible) results in each node having at least              entries

Example of B+-tree File Organization

 3/2 n
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Indexing Strings

 Variable length strings as keys

 Variable fanout

 Use space utilization as criterion for splitting, not number of 

pointers

 Prefix compression

 Key values at internal nodes can be prefixes of full key

Keep enough characters to distinguish entries in the 

subtrees separated by the key value

– E.g. “Silas” and “Silberschatz” can be separated by “Silb”

 Keys in leaf node can be compressed by sharing common 

prefixes
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B-Tree Index Files

 Similar to B+-tree, but B-tree allows search-key values 

to appear only once; eliminates redundant storage of 

search keys.

 Search keys in nonleaf nodes appear nowhere else in 

the B-tree; an additional pointer field for each search 

key in a nonleaf node must be included.

 Generalized B-tree leaf node

 Nonleaf node – pointers Bi are the bucket or file record 
pointers.
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B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data
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B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before reaching 

leaf node.

 Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early 

 Non-leaf nodes are larger, so fan-out is reduced.  Thus, B-Trees 

typically have greater depth than corresponding B+-Tree

 Insertion and deletion more complicated than in B+-Trees 

 Implementation is harder than B+-Trees.

 Typically, advantages of B-Trees do not out weigh disadvantages. 
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Multiple-Key Access

 Use multiple indices for certain types of queries.

 Example: 

select account_number

from account

where branch_name = “Perryridge” and balance = 1000

 Possible strategies for processing query using indices on single 
attributes:

1. Use index on branch_name to find accounts with branch name 
Perryridge; test balance = 1000 

2. Use index on balance to find accounts with balances of 
$1000; test branch_name = “Perryridge”.

3. Use branch_name index to find pointers to all records 
pertaining to the Perryridge branch.  Similarly use index on 
balance.  Take intersection of both sets of pointers obtained.
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Indices on Multiple Keys

 Composite search keys are search keys containing more than 

one attribute

 E.g. (branch_name, balance)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either 

 a1 < b1, or 

 a1=b1 and  a2 < b2
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Indices on Multiple Attributes

 For 

where branch_name = “Perryridge” and balance = 1000

the index on (branch_name, balance) can be used to fetch only 

records that satisfy both conditions.

 Using separate indices in less efficient — we may fetch many 

records (or pointers) that satisfy only one of the conditions.

 Can also efficiently handle 

where branch_name = “Perryridge” and balance < 1000

 But cannot efficiently handle

where branch_name < “Perryridge” and balance = 1000

 May fetch many records that satisfy the first but not the 

second condition

Suppose we have an index on combined search-key

(branch_name, balance).
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Non-Unique Search Keys

 Alternatives:

 Buckets on separate block (bad idea)

 List of tuple pointers with each key

Low space overhead, no extra cost for queries

Extra code to handle read/update of long lists

Deletion of a tuple can be expensive if there are many 

duplicates on search key (why?)

 Make search key unique by adding a record-identifier

Extra storage overhead for keys

Simpler code for insertion/deletion

Widely used
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Other Issues in Indexing

 Covering indices

 Add extra attributes to index so (some) queries can avoid 
fetching the actual records

Particularly useful for secondary indices 

– Why?

 Can store extra attributes only at leaf

 Record relocation and secondary indices

 If a record moves, all secondary indices that store record 
pointers have to be updated 

 Node splits in B+-tree file organizations become very expensive

 Solution: use primary-index search key instead of record 
pointer in secondary index

Extra traversal of primary index to locate record

– Higher cost for queries, but node splits are cheap

Add record-id if primary-index search key is non-unique
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Static Hashing

 A bucket is a unit of storage containing one or more records (a 

bucket is typically a disk block). 

 In a hash file organization we obtain the bucket of a record directly 

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as well 

as deletion.

 Records with different search-key values may be mapped to the 

same bucket; thus entire bucket has to be searched sequentially to 

locate a record. 
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Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to be the 

integer i.

 The hash function returns the sum of the binary representations of 

the characters modulo 10

 E.g. h(Perryridge) = 5    h(Round Hill) = 3   h(Brighton) = 3

Hash file organization of account file, using branch_name as key

(See figure in next slide.)
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Example of Hash File Organization 

Hash file organization 

of account file, using 

branch_name as key

(see previous slide for 

details).
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Hash Functions

 Worst hash function maps all search-key values to the same bucket; 

this makes access time proportional to the number of search-key 

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the 

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same 

number of records assigned to it irrespective of the actual distribution of 

search-key values in the file.

 Typical hash functions perform computation on the internal binary 

representation of the search-key. 

 For example, for a string search-key, the binary representations of 

all the characters in the string could be added and the sum modulo 

the number of buckets could be returned. .
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Handling of Bucket Overflows

 Bucket overflow can occur because of 

 Insufficient buckets 

 Skew in distribution of records.  This can occur due to two 

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key 

values

 Although the probability of bucket overflow can be reduced, it cannot 

be eliminated; it is handled by using overflow buckets.
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Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained 

together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow 

buckets,  is not suitable for database applications.
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Hash Indices

 Hashing can be used not only for file organization, but also for index-

structure creation.  

 A hash index organizes the search keys, with their associated record 

pointers, into a hash file structure.

 Strictly speaking, hash indices are always secondary indices 

 if the file itself is organized using hashing, a separate primary 

hash index on it using the same search-key is unnecessary.  

 However, we use the term hash index to refer to both secondary 

index structures and hash organized files. 
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Example of Hash Index
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Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B

of bucket addresses. Databases grow or shrink with time. 

 If initial number of buckets is too small, and file grows, performance 

will degrade due to too much overflows.

 If space is allocated for anticipated growth, a significant amount of 

space will be wasted initially (and buckets will be underfull).

 If database shrinks, again space will be wasted.

 One solution: periodic re-organization of the file with a new hash 

function

 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically. 
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Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing 

 Hash function generates values over a large range — typically b-bit 
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a 
table of bucket addresses.   

 Let the length of the prefix be i bits,  0  i  32.  

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows 
and shrinks.

 Multiple entries in the bucket address table may point to a bucket 
(why?)

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to 
coalescing and splitting of buckets. 
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General Extendable Hash Structure 

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next 

slide for details)
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Use of Extendable Hash Structure

 Each bucket j stores a value ij

 All the entries that point to the same bucket have the same values on 

the first ij bits.

 To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket 

address table, and follow the pointer to appropriate bucket

 To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket, say j.  

 If there is room in the bucket j insert record in the bucket.  

 Else the bucket must be split and insertion re-attempted (next slide.)

 Overflow buckets used instead in some cases (will see shortly)
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Insertion in Extendable Hash Structure (Cont) 

 If i > ij (more than one pointer to bucket j)

 allocate a new bucket z, and set ij = iz =  (ij + 1)

 Update the second half of the bucket address table entries originally 
pointing to j, to point to z

 remove each record in bucket j and reinsert (in j or z)

 recompute new bucket for Kj and insert record in the bucket (further 
splitting is required if the bucket is still full)

 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this 
insertion, create an overflow bucket 

 Else

 increment i and double the size of the bucket address table.

 replace each entry in the table by two entries that point to the 
same bucket.

 recompute new bucket address table entry for Kj

Now i > ij so use the first case above.   

To split a bucket j when inserting record with search-key value Kj:
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Deletion in Extendable Hash Structure

 To delete a key value, 

 locate it in its bucket and remove it. 

 The bucket itself can be removed if it becomes empty (with 

appropriate updates to the bucket address table). 

 Coalescing of buckets can be done (can coalesce only with a 

“buddy” bucket having same value of ij and same ij –1 prefix, if it is 

present) 

 Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive 

operation and should be done only if number of buckets becomes 

much smaller than the size of the table 
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Use of Extendable Hash Structure:  

Example 

Initial Hash structure, bucket size = 2
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Example (Cont.)

 Hash structure after  insertion of one Brighton and two Downtown 

records
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Example (Cont.)

Hash structure after insertion of Mianus record
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Example (Cont.)

Hash structure after insertion of  three Perryridge records
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Example (Cont.)

 Hash structure after insertion of Redwood and Round Hill records
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Extendable Hashing vs. Other Schemes

 Benefits of extendable hashing:  

 Hash performance does not degrade with growth of file

 Minimal space overhead

 Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than 
memory)

 Cannot allocate very large contiguous areas on disk either

 Solution: B+-tree file organization to store bucket address table

 Changing size of bucket address table is an expensive operation

 Linear hashing is an alternative mechanism 

 Allows incremental growth of its directory (equivalent to bucket 
address table)

 At the cost of more bucket overflows
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Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization

 Relative frequency of insertions and deletions

 Is it desirable to optimize average access time at the expense of 

worst-case access time?

 Expected type of queries:

 Hashing is generally better at retrieving records having a specified 

value of the key.

 If range queries are common, ordered indices are to be preferred

 In practice:

 PostgreSQL supports hash indices, but discourages use due to 

poor performance

 Oracle supports static hash organization, but not hash indices

 SQLServer supports only B+-trees



©Silberschatz, Korth and Sudarshan12.68Database System Concepts - 5th Edition.

Bitmap Indices

 Bitmap indices are a special type of index designed for efficient 

querying on multiple keys

 Records in a relation are assumed to be numbered sequentially from, 

say, 0

 Given a number n it must be easy to retrieve record n

 Particularly easy if records are of fixed size

 Applicable on attributes that take on a relatively small number of 

distinct values

 E.g. gender, country, state, …

 E.g. income-level (income broken up into a small number of  levels 

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

 A bitmap is simply an array of bits
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Bitmap Indices (Cont.)

 In its simplest form a bitmap index on an attribute has a bitmap for 

each value of the attribute

 Bitmap has as many bits as records

 In a bitmap for value v, the bit for a record is 1 if the record has the 

value v for the attribute, and is 0 otherwise
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Bitmap Indices (Cont.)

 Bitmap indices are useful for queries on multiple attributes 

 not particularly useful for single attribute queries

 Queries are answered using bitmap operations

 Intersection (and)

 Union (or)

 Complementation (not) 

 Each operation takes two bitmaps of the same size and applies the 

operation on corresponding bits to get the result bitmap

 E.g.   100110  AND 110011 = 100010

100110  OR  110011 = 110111

NOT 100110  = 011001

 Males with income level L1:   10010 AND 10100 = 10000

 Can then retrieve required tuples.

 Counting number of matching tuples is even faster
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Bitmap Indices (Cont.)

 Bitmap indices generally very small compared with relation size

 E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space 

used by relation.  

 If number of distinct attribute values is 8, bitmap is only 1% of 

relation size

 Deletion needs to be handled properly

 Existence bitmap to note if there is a valid record at a record location

 Needed for complementation

 not(A=v):      (NOT bitmap-A-v) AND ExistenceBitmap

 Should keep bitmaps for all values, even null value

 To correctly handle SQL null semantics for  NOT(A=v):

 intersect above result with  (NOT bitmap-A-Null)
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Efficient Implementation of Bitmap Operations

 Bitmaps are packed into words;  a single word and (a basic CPU 

instruction) computes and of 32 or 64 bits at once

 E.g. 1-million-bit maps can be and-ed with just 31,250 instruction

 Counting number of 1s can be done fast by a trick:

 Use each byte to index into a precomputed array of 256 elements 

each storing the count of 1s in the binary representation

 Can use pairs of bytes to speed up further at a higher memory 

cost

 Add up the retrieved counts

 Bitmaps can be used instead of Tuple-ID lists at leaf levels of 

B+-trees, for values that have a large number of matching records

 Worthwhile if > 1/64 of the records have that value, assuming a 

tuple-id is 64 bits

 Above technique merges benefits of bitmap and B+-tree indices
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Index Definition in SQL

 Create an index

create index <index-name> on <relation-name>

(<attribute-list>)

E.g.:  create index b-index on branch(branch_name)

 Use create unique index to indirectly specify and enforce the 

condition that the search key is a candidate key is a candidate key.

 Not really required if SQL unique integrity constraint is supported

 To drop an index 

drop index <index-name>

 Most database systems allow specification of type of index, and 

clustering.
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Partitioned Hashing

 Hash values are split into segments that depend on each 

attribute of the search-key.

(A1, A2, . . . , An) for n attribute search-key

 Example:  n = 2, for customer, search-key being 

(customer-street, customer-city)

search-key value hash value

(Main, Harrison) 101 111

(Main, Brooklyn) 101 001

(Park, Palo Alto) 010 010

(Spring, Brooklyn) 001 001

(Alma, Palo Alto) 110 010

 To answer equality query on single attribute, need to look up 

multiple buckets.  Similar in effect to grid files. 
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Sequential File For account Records
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Sample account File
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Figure 12.2
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Figure 12.14



©Silberschatz, Korth and Sudarshan12.80Database System Concepts - 5th Edition.

Figure 12.25
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Grid Files

 Structure used to speed the processing of general multiple search-

key queries involving one or more comparison operators.

 The grid file has a single grid array and one linear scale for each 

search-key attribute.  The grid array has number of dimensions 

equal to number of search-key attributes.

 Multiple cells of grid array can point to same bucket

 To find the bucket for a search-key value, locate the row and column 

of its cell using the linear scales and follow pointer
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Example Grid File for account
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Queries on a Grid File

 A grid file on two attributes A and B can handle queries of all following 

forms with reasonable efficiency 

 (a1  A  a2)

 (b1  B  b2)

 (a1  A  a2  b1  B  b2),.

 E.g., to answer (a1  A  a2  b1  B  b2), use linear scales to find 

corresponding candidate grid array cells, and look up all the buckets 

pointed to from those cells.
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Grid Files (Cont.)

 During insertion, if a bucket becomes full, new bucket can be created 

if more than one cell points to it. 

 Idea similar to extendable hashing, but on multiple dimensions

 If only one cell points to it, either an overflow bucket must be 

created or the grid size must be increased

 Linear scales must be chosen to uniformly distribute records across 

cells. 

 Otherwise there will be too many overflow buckets.

 Periodic re-organization to increase grid size will help.

 But reorganization can be very expensive.

 Space overhead of grid array can be high.

 R-trees (Chapter 23) are an alternative 


